For mobile, landscape view is recommended.
Bioremediation plays a crucial role in transforming and detoxifying chlorinated solvents and has been implemented as a stand-alone technology at sites undergoing monitored natural attenuation, biostimulation with or without bioaugmentation treatment, or as a polishing step when physical/chemical treatment serves as the primary remedy. Molecular biological tools (MBTs), foremost quantitative polymerase chain reaction (qPCR), provide information about the presence and abundance of keystone dechlorinating bacteria, and are instrumental for site assessment, bioremediation monitoring, and the implementation of adaptive site management strategies. Although the benefits of microbial analyses are indisputable, uncertainty about the interpretation of MBT data exists, and a consensus has not been reached regarding the value of MBTs for improved decision-making to accelerate paths toward site closure.
The overarching objective of this project was to advance MBTs and their application to minimize biases and to more effectively assess, predict, monitor, optimize, and manage reductive dechlorination processes at Department of Defense (DoD) sites impacted with chlorinated solvents. To further assist in the interpretation of MBT data, additional aims were to assess measurable parameters that correlate with the detoxification or incomplete (stalled) degradation of chlorinated ethenes, and to identify knowledge gaps that currently limit the efficient application of MBTs for decision-making at chlorinated solvent sites. Specifically, the following interrelated technical research objectives were addressed:
Available pure cultures and consortia capable of using chlorinated solvents, including chlorinated ethenes, as electron acceptors were used to unravel specific nutritional requirements and the response to inhibitors that impact dechlorination activity. Enrichment cultures were used to discover microbes with novel biomarkers for detoxification of chlorinated solvents. To expand the qPCR approach to a broader suite of biomarker genes, an open array plate targeting 112 reductive dechlorination biomarker genes was designed and validated. Further, an environmental proteomics pipeline was developed to allow the measurement of biomarker proteins in laboratory cultures and contaminated groundwater. To develop predictive understanding of detoxification (i.e., ethene formation) in groundwater aquifers impacted with chlorinated solvents, existing databases were mined for microbial (i.e., qPCR) and geochemical data, including contaminant and ethene concentrations. The outcomes of these research efforts were pubslished in peer-reviewed journals, presented at technical conferences and webinars, and communicated to practitioners, including RPMs.
The project made a series of discoveries that have already impacted bioremediation practice at DoD sites. The major accomplishments include:
High-throughput qPCR technology and environmental proteomics assist in the identification of parameters determining the feasibility and potential success of microbial remedies, so that non-productive investments can be avoided, realistic performance predictions can be established, and bioremediation sites can be efficiently managed to achieve cleanup goals and early site closures. More robust and comprehensive information about the microbiology and its activity will prevent and overcome suboptimal bioremediation performance (e.g., inhibition, nutritional limitations), and long-term performance predictions of bioremediation systems with and without intervention become feasible. (Project Completion - 2018)
Adrian, L., and F.E. Löffler. 2016. Organohalide-Respiring Bacteria. Berlin Heidelberg: Springer.
Cápiro, N.L., F.E. Löffler, and K.D. Pennella. 2015. Spatial and Temporal Dynamics of Organohalide-Respiring Bacteria in a Heterogeneous PCE–DNAPL Source Zone. Journal of Contaminant Hydrology, 182: 78-90.
Cápiro, N.L., Y. Wang, J.K. Hatt, C.A. Lebrón, K.D. Pennell, and F.E. Löffler. 2014. Distribution of Organohalide-Respiring Bacteria between Solid and Aqueous Phases. Environmental Science & Technology, 48(18):10878-10887.
Chen, G., A.R. Fisch, C.M. Gibson, E. Mack, E.S. Seger, S.R. Campagna, and F.E. Loffler. 2020. Mineralization Versus Fermentation: Evidence for Two Distinct Anaerobic Bacterial Degradation Pathways for Dichloromethane. ISME Journal, 14:959-970. doi.org/10.1038/s41396-019-0579-5
Chen, G., O. Shouakar-Stash, E. Phillips, S.D. Justicia-Leon, T. Gilevska, B.S. Lollar, E.E. Mack, E.S. Seger, and F.E. Löffler. 2018. Dual Carbon–Chlorine Isotope Analysis Indicates Distinct Anaerobic Dichloromethane Degradation Pathways in Two Members of Peptococcaceae. Environmental Science & Technology, 52(15):8607-8616.
Chen, G., S. Kleindienst, D.R. Griffiths, E.E. Mack, E.S. Seger, and F.E. Löffler. 2017. Mutualistic Interaction Between Dichloromethane‐ and Chloromethane‐Degrading Bacteria in an Anaerobic Mixed Culture. Environmental Microbiology, 19(11):4784-4796.
Clark, K., D.M. Taggart, B.R. Baldwin, K.M. Ritalahti, R.W. Murdoch, J.K. Hatt, and F.E. Loffler. 2018. Normalized Quantitative PCR Measurements as Predictors for Ethene Formation at Sites Impacted with Chlorinated Ethenes. Environmental Science & Technology, 52(22), 13410-13420. doi:10.1021/acs.est.8b04373
Higgins, S.A., E. Padilla-Crespo, and F.E. Löffler. 2018. Draft Genome Sequences of the 1,2-Dichloropropane-Respiring Dehalococcoides mccartyi Strains RC and KS. Microbiology Resource Announcements, 7(10), e01081-01018. doi:10.1128/mra.01081-18
Im, J., E. Mack, E.S. Seger, and F.E. Löffler. 2019. Biotic and Abiotic Dehalogenation of 1,1,2-Trichloro-1,2,2-trifluoroethane (CFC-113): Implications for Bacterial Detoxification of Chlorinated Ethenes. Environmental Science and Technology, 53(20):11941-11948. doi.org/10.1021/acs.est.9b04399
Justicia-Leon, S. D., S. Higgins, E.E. Mack, D.R. Griffiths, S. Tang, E.A. Edwards, and F.E. Löffler. 2014. Bioaugmentation with Distinct Dehalobacter Strains Achieves Chloroform Detoxification in Microcosms. Environmental Science & Technology, 48(3):1851-1858. doi.org/10.1021/es403582f
Kaya, D., B.V. Kjellerup, K. Chourey, R.L. Hettich, D.M. Taggart, and F.E. Löffler. 2019. Impact of Fixed Nitrogen Availability on Dehalococcoides mccartyi Reductive Dechlorination Activity. Environmental Science & Technology, 53(24):14548-14558.
Kleindienst, S., K. Chourey, G. Chen, R.W. Murdoch, S.A. Higgins, R. Iyer, S.R. Campagna, E.E. Mack, E.S. Seger, R.L. Hettich, and F.E. Löffler. 2019. Proteogenomics Reveals Novel Reductive Dehalogenases and Methyltransferases Expressed during Anaerobic Dichloromethane Metabolism. Applied and Environmental Microbiology, 85(6):e02768-02718. doi.org/10.1128/aem.02768-18
Kleindienst, S., S.A. Higgins, D. Tsementzi, G. Chen, K.T. Konstantinidis, E.E. Mack, and F.E. Löffler. 2017. 'Candidatus Dichloromethanomonas elyunquensis’ gen. nov., sp. nov., a Dichloromethane-Degrading Anaerobe of the Peptococcaceae Family. Systematic and Applied Microbiology, 40(3): 150-159.
Kleindienst, S., S.A. Higgins, D. Tsementzi, K.T. Konstantinidis, E.E. Mack, and F.E. Löffler. 2016. Draft Genome Sequence of a Strictly Anaerobic Dichloromethane-Degrading Bacterium. Genome Announcements, 4(2):e00037-16.
Lawson, C. E., W.R. Harcombe, R. Hatzenpichler, S.R. Lindemann, F.E. Löffler, M.A. O’Malley, H.G. Martín, B.F. Pfleger, L. Raskin, O.S. Venturelli, D.G. Weissbrodt, D.R. Noguera, and K.D. McMahon. 2019. Common Principles and Best Practices for Engineering Microbiomes. Nature Reviews Microbiology, 17(12):725-741. doi.org/10.1038/s41579-019-0255-9
Lee, J., J. Im, U. Kim, and F.E. Löffler. 2016. A Data Mining Approach to Predict In Situ Detoxification Potential of Chlorinated Ethenes. Environmental Science & Technology, 50:5181-5188.
Löffler, F. E., J. Yan, K.M. Ritalahti, L. Adrian, E.A. Edwards, K.T. Konstantinidis, J.A. Müller, H. Fullerton, S.H. Zinder, and A.M. Spormann. 2013. Dehalococcoides mccartyi gen. nov., sp. nov., Obligately Organohalide-respiring Anaerobic Bacteria Relevant to Halogen Cycling and Bioremediation, Belong to a Novel Bacterial Class, Dehalococcoidia classis nov., Order Dehalococcoidales ord. nov. and Family Dehalococcoidaceae fam. nov., within the Phylum Chloroflexi. International Journal of Systematic and Evoluntionary Microbiology, 63:625-635. doi.org/10.1099/ijs.0.000308
Padilla-Crespo, E., J. Yan, C. Swift, D.D. Wagner, K. Chourey, R.L. Hettich, K.M. Ritalahti, and F.E. Löffler. 2014. Identification and Environmental Distribution of dcpA, which Encodes the Reductive Dehalogenase Catalyzing the Dichloroelimination of 1, 2-Dichloropropane to Propene in Organohalide-respiring Chloroflexi. Applied and Environmental Microbiology, 80(3):808-818. doi.org/10.1128/AEM.02927-13
Şimşir, B., J. Yan, J. Im, D. Graves, and F.E. Löffler. 2017. Natural Attenuation in Streambed Sediment Receiving Chlorinated Solvents from Underlying Fracture Networks. Environmental Science & Technology, 51(9):4821-4830.
Solis, M. I. V., P.E. Abraham, K. Chourey, C.M. Swift, F.E. Löffler, and R.L. Hettich. 2019. Targeted Detection of Dehalococcoides mccartyi Microbial Protein Biomarkers as Indicators of Reductive Dechlorination Activity in Contaminated Groundwater. Scientific Reports, 9(1):10604. doi.org/10.1038/s41598-019-46901-6
Tang, S., P.H. Wang, S.A. Higgins, F.E. Löffler, and E.A. Edwards. 2016. Sister Dehalobacter Genomes Reveal Specialization in Organohalide Respiration and Recent Strain Differentiation Likely Driven by Chlorinated Substrates. Frontiers in Microbiology, 7.
Wang, P.-H., S. Tang, K. Nemr, R. Flick, J. Yan, R. Mahadevan, A.F. Yakunin, F.E. Löffler, and E.A. Edwards. 2017. Refined Experimental Annotation Reveals Conserved Corrinoid Autotrophy in Chloroform-respiring Dehalobacter Isolates. The ISME Journal, 11(3):626-640.
Yan, J., J. Im, Y. Yang, and F.E. Löffler. 2013. Guided Cobalamin Biosynthesis Supports Dehalococcoides mccartyi Reductive Dechlorination Activity. Philosophical Transactions of the Royal Society B, 368(1616).
Yan, J., M. Bi, A.K. Bourdon, A.T. Farmer, P.-H. Wang, O. Molenda, A. Quaile, Y. Yang, Y. Yin, B. Şimşir, S.R. Campagna, E.A. Edwards, and F.E. Löffler. 2018. Purinyl-cobamide, a novel native prosthetic group of reductive dehalogenases. Nature Chemical Biology, 14:8-14.
Yan, J., S. Burcu, A.T. Farmer, M. Bi, Y. Yang, S.R. Campagna, and F.E. Löffler. 2015. The Corrinoid Cofactor of Reductive Dehalogenases Affects Dechlorination Rates and Extents in Organohalide-Respiring Dehalococcoides mccartyi. The ISME Journal, 10:1092-1101.
Yan, J., Y. Yang, X. Li, and F.E. Löffler. 2019. Complete Genome Sequence of Dehalococcoides mccartyi Strain FL2, a Trichloroethene-Respiring Anaerobe Isolated from Pristine Freshwater Sediment. Microbiology Resource Announcements, 8(33):e00558-19. doi.org/10.1128/MRA.00558-19
Yang, Y., N.L. Cápiro, J. Yan, T.F. Marcet, K.D. Pennell, and F.E. Löffler. 2017. Resilience and recovery of Dehalococcoides mccartyi following low pH exposure. FEMS Microbiology Ecology, 93(12).
Yang, Y., N.L. Cápiro, T.F. Marcet, J. Yan, K.D. Pennell, and F.E. Löffler. 2017. Organohalide Respiration with Chlorinated Ethenes under Low pH Conditions. Environmental Science & Technology, 51(5):8579-8588.
Yang, Y., S.A. Higgins, J. Yan, B. Şimşir, K. Chourey, R. Lyer, R.L. Hettich, B. Baldwin, D.M. Ogles, and F.E. Löffler. 2017. Grape Pomace Compost Harbors Organohalide-Respiring Dehalogenimonas Species with Novel Reductive Dehalogenase Genes. The ISME Journal, 11:2767-2780.
Yin, Y., J. Yan, G. Chen, F.K. Murdoch, N. Pfisterer, and F.E. Löffler. 2019. Nitrous Oxide Is a Potent Inhibitor of Bacterial Reductive Dechlorination. Environmental Science & Technology. doi:10.1021/acs.est.8b05871