For mobile, landscape view is recommended.
The U.S. Army is the largest Department of Defense (DoD) land user in Alaska, overseeing
1.5 million acres of training range and cantonment lands. Some of the training ranges are inaccessible by road. Infrastructure planned over the next 10 years to address access issues will greatly expand the DoD’s presence and capabilities in Alaska. The training ranges and cantonments are underlain by a complex mosaic of discontinuous permafrost and its presence (or absence) plays a major role in soil thermal, hydrologic, and vegetation regimes.
A projected 1 to 3 ºC increase in mean annual air temperatures in the area between now and 2100 is expected to have major ramifications on ecosystem and hydrologic processes and their potential feedbacks to climate-permafrost-ecologic interactions. This project was conducted to identify the potential impacts of climate warming on U.S. Army Alaska training lands and to provide land managers with scientifically based information to help them plan for a warmer future. Results were linked with a broad array of historical and projected meteorological and climatological information to develop a geospatial decision support system to help DoD manage its lands in a potentially warmer future.
This project included a variety of field measurements and the application of multiple modeling platforms to identify how, where, and at what rate climate warming could impact vegetation, soils, hydrology, and permafrost on interior Alaska DoD lands. Repeat imagery was synthesized with field measurements of vegetation, soil, geomorphic, geophysical, and hydrologic information.
The University of Alaska Fairbanks Geophysical Institute Permafrost Laboratory (GIPL) soil and vegetation thermal model also was coupled to the U.S. Army Corps of Engineers Gridded Surface Subsurface Hydrologic Analysis (GSSHA) hydrogeologic model. The resulting software package was tested with measurements from a research watershed near Fairbanks to validate the ability to simulate streamflow in watersheds with a variety of permafrost coverage. This product will allow for the projection of how and where stream flows may change when permafrost extent is modified by press climate change processes or by pulse disturbances.
The project results were synthesized with the most up to date climate projections for Alaska and ecosystem information on soils, hydrology, permafrost extent, fire history, and vegetation to develop a queriable geographic information systems decision support tool that has been delivered to U.S. Army Alaska training range managers. This support tool is called the Geographic Information Supporting Military Operations (GISMO).
The project addressed five thematic areas:
This project used repeat imagery analyses of landscape change to identify ecosystem transitions across the landscape. Fire history and biophysical factors affecting ecosystem change were measured through photo-interpretation of 2000 systematically distributed points on a time-series (1949−1952, 1978−1980, 2006−2011) of geo-rectified imagery across interior Alaska Army training lands. Overall, 56.8% of the region had changes in ecotypes over the 55−62 year period and most of the changes resulted from increases in upland and lowland forest types with an accompanying decrease in upland and lowland scrub types, as post-fire succession led to late-successional stages.
The results from this study will help to identify how, where, and hopefully when ecological changes will occur in interior Alaska ecosystems. Our study sites are on the front lines of projected climate warming and impacts on ecosystems due to Arctic amplification. The primary benefit of this study for the DoD is scientifically based strategic installation planning capabilities that account for potential climate change impacts on training ranges. U.S. Army Alaska received a queriable web based geospatial decision support tool that provides a soil thermal modeling capability, a module to project future permafrost extent, historical and projected meteorologic information for all seasons, and a fire history database. For the U.S. Army Corps of Engineers, the GSSHA hydrologic model can now account for seasonal freeze thaw processes and can be applied to permafrost and seasonally frozen terrains. The thermal and hydrologic model results are transferable to other locations such as Afghanistan, Korea and the northern conterminous United States.
The scientific community will benefit through new and novel data presented in peer reviewed publications and Technical Reports. These results include field measurements and modeling applications focused on mapping permafrost bodies, modeling hydrologic flow, predicting the soil thermal response to climate warming, understanding post fire disturbance effects on permafrost, and tracking ecosystem transitions over time.