- News and Events
- Program Area Updates – Information Bulletin Archive
- Calendar
- Blog
- Conferences & Workshops
- In the Spotlight
- Using Plants to Sustain Military Ranges
- Sonar Key to Detecting Underwater UXO
- Monitoring and Mapping Coral Reefs
- EPA-Approved Protocol for Range Characterization
- Robotic Laser Coating Removal System
- MetalMapper
- Understanding cis-DCE and VC Biodegradation
- Eliminating Cr from Medium Caliber Gun Barrels
- Predicting Responses to Landscape Changes
- Applying Statistics and Modeling to UXO Discrimination
- Composites with Low HAP Compounds
- Perchlorate-Free Flares Undergo Qualification Testing
- Recovering Energy from Landfill Gas
- Modeling Underwater UXO Mobility in Reef Environments
- Understanding the Behavioral Ecology of Cetaceans
- Forecasting the Effects of Stressors on At-Risk Species
- Advanced Signal Processing for UXO Discrimination
- Reducing Emissions for Jet Engines of the Future
- Assessing Vapor Intrusion at Chlorinated Solvent Sites
- Passive Sampling of Contaminated Sediments
- Leveraging Advanced Sensor Data to Clean Up UXO
- Source Zone Architecture Key to DNAPL Remediation
- Biopolymers Maintain Training Berms, Prevent Contamination
- Rare-Earth Corrosion Protection Mechanisms
- Cold Spray Technology for Aircraft Component Repair
- Ecological Research Supports Training at Camp Lejeune
- Loss of Permafrost – Impact on DoD Lands in Alaska
- Converting Solar Energy to Electricity and Heat
- ASETSDefense Workshop on Sustainable Surface Engineering
- Forward Operating Bases: Water and Waste Management
- Evaluating Matrix Diffusion Effects on Groundwater
- ES&T Features In Situ Sediment Remediation
- Erosion Resistant Coating Improves Engine Efficiency
- Optimizing Boiler Efficiency Through Combustion Control
- Climate Change Adaptation: Enhanced Decision Making
- Adapting Energy-Efficient Heat Pumps for Cold Climates
- Workshop on Sustainable Surface Engineering Advances
- Ecological Forestry & DoD’s Carbon Footprint
- Munitions Classification in the Hands of Production Firms
- Intelligent and Energy-Efficient LED Street Lighting
- ESTCP Partners with EPA on Watershed Management
- White House Energy Security Blueprint References ESTCP
- Success Classifying Munitions in Wooded Areas
- Evaluating Technology Performance at DNAPL Sites
- ‘Flyer’ Improves OB/OD Air Emissions Measurement
- Identifying Research Needs for Underwater Munitions
- Success Classifying Small Munitions at Camp Butner
- Managing Military Lands in the Southwest
- Partnering to Advance Munitions Classification
- ‘Flyer’ Improves OB/OD Air Emissions Measurement - Preview
- Sonar Identifies Underwater Munitions in Gulf Study
- Protective Coating Improves Jet Engine Fuel Efficiency
- Assessing Pacific Island Watershed Health
- New Insights Into Tracking Contaminants in Bedrock
- ClimaStat Technology Improves HVAC Efficiency
- Innovative Plating Process for Beryllium Alternatives
Cold Spray Technology for Aircraft Component Repair

The U.S. Army, Navy, and Air Force have experienced significant corrosion problems with magnesium alloys that are used to fabricate many different types of aircraft components. The most severe of these problems are associated with large and expensive transmission and gearbox housings for rotorcraft which have to be removed prematurely because of corrosion. Many of the components cannot be reclaimed because there is no existing technology that can restore them adequately for service. The Corpus Christi Army Depot has millions of dollars of used magnesium housings waiting to be reclaimed. Overall, premature failures of these components cost the Department of Defense approximately $100 million per year.
Mr. Victor Champagne of the U.S. Army Research Laboratory and his team have developed a cold spray process that involves accelerating aluminum alloy particles to high velocities and impacting them on the surface of the magnesium alloy components. In their project, the cold spray process was demonstrated and validated to be a cost-effective, environmentally acceptable technology that could provide surface protection, as well as a method for restoring magnesium components that have been removed from service. The process can be incorporated into manufacturing, and portable systems can be developed for field repair. A cold spray demonstration facility was established at the Navy’s Fleet Readiness Center – East in North Carolina (formerly the Naval Air Depot Cherry Point).
This project resulted in the implementation of cold spray by Sikorsky Aircraft Company. Both Sikorsky and the Army Program Office for the UH-60 Blackhawk helicopter have approved cold spray for use as a repair technology for one UH-60 magnesium component, with other approvals expected soon. The U.S. Army Research Laboratory developed a Military Process Specification, “MIL-STD-3021, Materials Deposition, Cold Spray,” that was selected for the Defense Standardization Program Award in 2008. With future implementation, the cold spray process should provide a significant return on investment through increased in-service life and the ability to reclaim extremely valuable components.
For this important work, Mr. Champagne received a 2012 ESTCP Project of the Year Award.
Project Overview
Project Team
- Victor Champagne (Army Research Laboratory)
- Robert Kestler (Fleet Readiness Center – East)
- Robert Guillemette (Sikorsky Aircraft)
- Michael Kane (Army Aviation Missile Command)
- Timothy J. Eden (Applied Research Laboratory, The Pennsylvania State University)
- Keith Legg (Rowan Technology Group)
- Darren Gerrard (Defence Science and Technology Organisation, Australia)
-
Stacey Luker (Joint Strike Fighter Program's Environmental, Safety and Occupational Health Team)
Related Resources
- Can a Cold, Green, Supersonic Spray Save the Black Hawk? (FoxNews.com, January 3, 2013)
- ARL Technology Named 2012 Project of the Year for Environmental Technology, Science ( www.army.mil, December 2, 2012)
- ARL Technology Awarded for Environmentally Friendly Cold Spray Technology (Vertical, January 4, 2013)
Webinar Series
Promoting the transfer of innovative, cost-effective and sustainable solutions.